schur

Syntax

schur(obj, [sort])

Arguments

obj is a square matrix.

sort (optional) is a string. It is used to reorder the factors according to a specified ordering of the eigenvalues. The value can be 'lhp' (eigenvalue is a negative real number), 'rhp' (eigenvalue is a positive real number), 'iuc' (the absolute value of a complex eigenvalue<=1.0), 'ouc' (the absolute value of a complex eigenvalue>1.0).

Details

Compute the Schur decomposition of a square matrix.

Suppose the input is the square matrix A:

  • If sort is not specified, return 2 matrices: T (Schur form of A, an upper triangular matrix) and an unitary matrix Z (the transpose matrix of Z is equal to its inverse matrix), so that A = Z*T*Z-1.
  • If sort is specified, the function will also return an integer indicating the number of eigenvalues that meet the sorting conditions.

Examples

m=matrix([[0,0,1],[2,1,0],[2,2,1]]);
T,Z=schur(m)
T;
#0 #1 #2
2.658967 1.424405 -1.929334
0 -0.329484 -0.490637
0 1.311789 -0.329484
Z
#0 #1 #2
0.727116 -0.601562 0.330796
0.528394 0.798019 0.289768
0.438294 0.035904 -0.898114
T,Z,s=schur(m, 'lhp');
T;
#0 #1 #2
-0.329484 1.570974 2.251318
-0.40969 -0.329484 -0.092398
0 0 2.658967
Z
#0 #1 #2
0.703818 -0.632169 0.324042
0.509043 0.766983 0.390655
-0.495495 -0.109999 0.861618
s
// output: 2
T,Z,s=schur(m, 'rhp');

s;
// output: 1

m=matrix([[0,0,9],[-2,1,0],[2,2,1]]);
T,Z,s=schur(m, 'iuc');
s;
// output: 0

T,Z,s=schur(m, 'ouc');
s;
// output: 1