temporalAdd
Syntax
temporalAdd(obj, duration, unit)
Alias: datetimeAdd
Arguments
obj is a temporal scalar/pair/vector.
duration is an integer.
unit is a STRING vector.
-
When parameter duration is an integer, unit is:
-
the unit of parameter duration. It can be "ns"(nanosecond), "us"(microsecond), "ms"( millisecond), "s"(second), "m"(minute), "H"(hour), "d"(day), "w"(week), "M"(month), "y"( year), or "B"(business day).
-
the identifier of trading calendar, e.g., the Market Identifier Code of an exchange, or a user-defined calendar name. The corresponding file must be saved in marketHolidayDir.
-
-
When duration is of DURATION type, this parameter is not required.
Details
Add a value to a temporal variable.
Examples
temporalAdd(2017.01.16,1,"d");
// output: 2017.01.17
temporalAdd(2017.01.16,1,"w");
// output: 2017.01.23
temporalAdd(2016.12M,2,"M");
// output: 2017.02M
temporalAdd(2012.07.31T13:30:10.008,-1,'M');
// output: 2012.06.30T13:30:10.008
temporalAdd(2012.07.31T13:30:10.008,1,'y');
// output: 2013.07.31T13:30:10.008
temporalAdd(13:30:10.008007006,100,"ns");
// output: 13:30:10.008007106
x=[12:23:34, 23:34:45];
temporalAdd(x, 10m);
// output: [12:33:34,23:44:45]
Add four business days to 2021.08.06.
temporalAdd(2021.08.06, 4B)
// output: 2021.08.12
Add 2 trading days for "date" according to the trading calendar CFFEX.
date=[2023.01.01, 2023.01.02, 2023.01.03, 2023.01.04]
temporalAdd(date,2,`CFFEX)
// output: [2023.01.04,2023.01.04,2023.01.05,2023.01.06]
temporalAdd(datetime(2020.08.31), -2M)
// output: 2020.06.30T00:00:00
//The result is the same as setting months=2 in pandas *DateOffset*.
pd1 = pd.Timestamp("2020.08.31")
print(pd1 -pd.offsets.DateOffset(months=2))
// output: 2020-06-30 00:00:00
temporalAdd(datetime(2020.02.29), -1y)
// output: 2019.02.28T00:00:00
temporalAdd(datetime(2020.02.29), -4y)
// output: 2016.02.29T00:00:00
//The result is the same as setting years=1 in pandas *DateOffset*.
pd1 = pd.Timestamp("2020.02.29")
print(pd1 - pd.offsets.DateOffset(years=1))
// output: 2019-02-28 00:00:00
//The result is the same as setting years=4 in pandas *DateOffset*.
pd2 = pd.Timestamp("2020.02.29")
print(pd2 - pd.offsets.DateOffset(years=4))
// output: 2016-02-29 00:00:00