qr
Syntax
qr(obj, [mode='full'], [pivoting=false])
Arguments
obj is a matrix.
mode is a string indicating what information is to be returned. It can be "full", "economic" or "r". The default value is "full".
pivoting is a Boolean value. The default value is false.
Details
Perform the QR decomposition of a matrix. Decompose a matrix A into an orthogonal matrix Q and an upper triangular matrix R, with A=Q*R.
-
If mode="full", return 2 matrices: Q (m-by-m) and R (m-by-n).
-
If mode="economic", return 2 matrices: Q (m-by-k) and R (k-by-n) with k=min(m,n).
-
If mode="r", only return matrix R (m-by-n).
If pivoting= true, also return a vector P which has the same length as the number of columns of the matrix. P is the pivoting for rank-revealing QR decomposition indicating the location of 1s in the permutation matrix.
Examples
A = matrix([2,5,7,5], [5,2,5,4], [8,2,6,4]);
Q,R = qr(A);
Q;
#0 | #1 | #2 | #3 |
---|---|---|---|
-0.197066 | 0.903357 | 0.300275 | 0.234404 |
-0.492665 | -0.418267 | 0.459245 | 0.609449 |
-0.68973 | -0.02475 | 0.170745 | -0.703211 |
-0.492665 | 0.091573 | -0.818398 | 0.281284 |
R;
#0 | #1 | #2 |
---|---|---|
-10.148892 | -7.38997 | -8.670898 |
0 | 3.922799 | 6.608121 |
0 | 0 | 1.071571 |
0 | 0 | 0 |
Q,R=qr(A,mode='economic');
Q;
#0 | #1 | #2 |
---|---|---|
-0.197066 | 0.903357 | 0.300275 |
-0.492665 | -0.418267 | 0.459245 |
-0.68973 | -0.02475 | 0.170745 |
-0.492665 | 0.091573 | -0.818398 |
R;
#0 | #1 | #2 |
---|---|---|
-10.148892 | -7.38997 | -8.670898 |
0 | 3.922799 | 6.608121 |
0 | 0 | 1.071571 |
Q,T,R=qr(A,mode='raw');
R;
#0 | #1 | #2 |
---|---|---|
-10.148892 | -7.38997 | -8.670898 |
0.41156 | 3.922799 | 6.608121 |
0.576184 | 0.3046 | 1.071571 |
0.41156 | 0.156539 | 0.900419 |
T;
// output: [1.197066,1.790053,1.104512]
R
#0 | #1 | #2 |
---|---|---|
-10.148892 | -7.38997 | -8.670898 |
0 | 3.922799 | 6.608121 |
0 | 0 | 1.071571 |
Q,T,R,P = qr(A,mode='raw',pivoting=true);
Q;
#0 | #1 | #2 |
---|---|---|
-10.954451 | -8.033264 | -8.215838 |
0.105516 | -6.20215 | -1.45111 |
0.316548 | 0.37699 | -0.627918 |
0.211032 | 0.284188 | 0.936372 |
T;
// output: [1.730297,1.635478,1.065648]
R
#0 | #1 | #2 |
---|---|---|
-10.954451 | -8.033264 | -8.215838 |
0 | -6.20215 | -1.45111 |
0 | 0 | -0.627918 |
P;
// output: [2,0,1]