fminNCG
Syntax
fminNCG(func, X0, fprime, fhess, [xtol=1e-5], [maxIter], [c1=1e-4],
[c2=0.9])
Arguments
func is the function to minimize. The return value of the function must be numeric type.
X0 is a numeric scalar or vector indicating the initial guess.
fprime is the gradient of func.
fhess is the function to compute the Hessian matrix of func.
xtol (optional) is a positive number. Convergence is assumed when the average relative error in the minimizer falls below this amount. The default value is 1e-5.
maxIter (optional) is a non-negative integer indicating the maximum number of iterations. The default value is 15000.
c1 (optional) is a number in (0,1) indicating the parameter for Armijo condition rule. The default value is 1e-4.
c2 (optional) is a number in (0,1) indicating the parameter for curvature condition rule. The default value is 0.9. Note that c2 must be greater than c1.
Details
Perform unconstrained minimization of a function using the Newton-CG method.
Return value: A dictionary with the following members:
-
xopt: A floating-point vector indicating the parameters of the minimum.
-
fopt: A floating-point scalar indicating the value of func at the minimum, i.e.,
fopt=func(xopt)
. -
iterations: The number of iterations.
-
fcalls: The number of function calls made.
-
hcalls: The number of Hessian calls made.
-
warnFlag: An integer, which can be
-
0: Minimization performed.
-
1: Maximum number of iterations exceeded.
-
2: Line search failure (precision loss).
-
3: Null result encountered.
-
Examples
To minimize function rosen
:
def rosen(x) {
N = size(x);
return sum(100.0*power(x[1:N]-power(x[0:(N-1)], 2.0), 2.0)+power(1-x[0:(N-1)], 2.0));
}
def rosen_der(x) {
N = size(x);
xm = x[1:(N-1)]
xm_m1 = x[0:(N-2)]
xm_p1 = x[2:N]
der = array(double, N)
der[1:(N-1)] = (200 * (xm - xm_m1*xm_m1) - 400 * (xm_p1 - xm*xm) * xm - 2 * (1 - xm))
der[0] = -400 * x[0] * (x[1] - x[0]*x[0]) - 2 * (1 - x[0])
der[N-1] = 200 * (x[N-1] - x[N-2]*x[N-2])
return der
}
def diag1(x, k) {
N = size(x)
m = matrix(type(x), N+1,N+1)
if (k == 1) {
for(i in 0:N){
m[i, i+1] = x[i]
}
} else {
for(i in 0:N){
m[i+1, i] = x[i]
}
}
return m
}
def rosen_hess(x) {
N = size(x);
x1= x[0:(N-1)] * 400
H = diag1(-x1, 1) - diag1(x1, -1)
diagonal = array(type(x), N)
diagonal[0] = 1200 * x[0]*x[0] - 400 * x[1] + 2
diagonal[N-1] = 200
diagonal[1:(N-1)] = 202 + 1200 * x[1:(N-1)]*x[1:(N-1)] - 400 * x[2:N]
H = H + diag(diagonal)
return H
}
X0 = [4, -2.5]
fminNCG(rosen, X0, rosen_der, rosen_hess)
Output:
xopt->[0.999999966120496,0.999999932105584]
fopt->1.149654357653714E-15
iterations->34
fcalls->45
gcalls->45
hcalls->34
warnFlag->0