Matrix
A matrix in DolphinDB is implemented by a one-dimensional array with column major. Please note that both the column index and the row index start from 0.
Creating matrices
Use function matrix to create a matrix:
// create an integer matrix with all values set to the default value of 0
matrix(int, 2, 3);
#0 | #1 | #2 |
---|---|---|
0 | 0 | 0 |
0 | 0 | 0 |
// create a symbol matrix with all values set to the default value of null
matrix(symbol, 2, 3);
#0 | #1 | #2 |
---|---|---|
The matrix function can also create a matrix from vectors, matrices, table, tuple of vectors and their combination.
matrix(1 2 3);
#0 |
---|
1 |
2 |
3 |
matrix([1],[2])
#0 | #1 |
---|---|
1 | 2 |
matrix(1 2 3, 4 5 6);
#0 | #1 |
---|---|
1 | 4 |
2 | 5 |
3 | 6 |
matrix(table(1 2 3 as id, 4 5 6 as value));
#0 | #1 |
---|---|
1 | 4 |
2 | 5 |
3 | 6 |
matrix([1 2 3, 4 5 6]);
#0 | #1 |
---|---|
1 | 4 |
2 | 5 |
3 | 6 |
matrix([1 2 3, 4 5 6], 7 8 9);
#0 | #1 | #2 |
---|---|---|
1 | 4 | 7 |
2 | 5 | 8 |
3 | 6 | 9 |
matrix([1 2 3, 4 5 6], 7 8 9, table(0.5 0.6 0.7 as id), 1..9$3:3);
#0 | #1 | #2 | #3 | #4 | #5 | #6 |
---|---|---|---|---|---|---|
1 | 4 | 7 | 0.5 | 1 | 4 | 7 |
2 | 5 | 8 | 0.6 | 2 | 5 | 8 |
3 | 6 | 9 | 0.7 | 3 | 6 | 9 |
Statement X $ m:n or function cast(X, m:n) converts vector X into an m by n matrix.
m=1..10$5:2;
m;
#0 | #1 |
---|---|
1 | 6 |
2 | 7 |
3 | 8 |
4 | 9 |
5 | 10 |
cast(m,2:5);
#0 | #1 | #2 | #3 | #4 |
---|---|---|---|---|
1 | 3 | 5 | 7 | 9 |
2 | 4 | 6 | 8 | 10 |
DolphinDB is a column major system. Consecutive elements of columns are contiguous in memory. DolphinDB fills the elements in a matrix along the columns from the left to the right.
Use function rename! to add column names or row names to a matrix:
m1=1..9$3:3;
m1;
#0 | #1 | #2 |
---|---|---|
1 | 4 | 7 |
2 | 5 | 8 |
3 | 6 | 9 |
m1.rename!(`col1`col2`col3);
col1 | col2 | col3 |
---|---|---|
1 | 4 | 7 |
2 | 5 | 8 |
3 | 6 | 9 |
m1.rename!(1 2 3, `c1`c2`c3);
c1 | c2 | c3 |
---|---|---|
1 | 4 | 7 |
2 | 5 | 8 |
3 | 6 | 9 |
m1.colNames();
// output: ["c1","c2","c3"]
m1.rowNames();
// output: [1,2,3]
Reshaping matrices
Accessing matrices
Check dimensions ( shape), the number of rows( rows)and the number of columns ( cols):
m=1..10$2:5;
shape m;
// output: 2 : 5
rows m
// output: 2
cols m
// output: 5
There are 2 ways to retrieve a cell: m.cell(row, col) or m[row, col].
m=1..12$4:3;
m;
#0 | #1 | #2 |
---|---|---|
1 | 5 | 9 |
2 | 6 | 10 |
3 | 7 | 11 |
4 | 8 | 12 |
m[1,2];
// output: 10
m.cell(1,2);
// output: 10
There are 2 ways to retrieve columns: m.col(index) where index is scalar/pair, and m[index] or m[, index] where index is scalar/pair/vector.
m=1..12$4:3;
m;
#0 | #1 | #2 |
---|---|---|
1 | 5 | 9 |
2 | 6 | 10 |
3 | 7 | 11 |
4 | 8 | 12 |
m[1];
// output: [5,6,7,8]
// select the column at position 1 to produce a vector
m[,1];
// select the column at position 1 to produce a sub matrix
#1 |
---|
5 |
6 |
7 |
8 |
m.col(2);
// output: [9,10,11,12]
// select the column at position 2
m[2:0];
// select the columns at position 1 and 0
#0 | #1 |
---|---|
5 | 1 |
6 | 2 |
7 | 3 |
8 | 4 |
m[1:3];
// select the columns at position 1 and 2
#0 | #1 |
---|---|
5 | 9 |
6 | 10 |
7 | 11 |
8 | 12 |
Please note that if index is a scalar, both m.col(index) and m[index] generate a vector whereas m[, index] generates a matrix.
m.col(1).typestr();
// output: FAST INT VECTOR
m[1].typestr();
// output: FAST INT VECTOR
m[,1].typestr();
// output: FAST INT MATRIX
There are 2 ways to retrieve rows: m.row(index) where index is scalar/pair, and m[index,] where index is scalar/pair/vector.
m=1..12$3:4;
m;
#0 | #1 | #2 | #3 |
---|---|---|---|
1 | 4 | 7 | 10 |
2 | 5 | 8 | 11 |
3 | 6 | 9 | 12 |
m[0,];
// return a sub matrix with row 0
#0 | #1 | #2 | #3 |
---|---|---|---|
1 | 4 | 7 | 10 |
// use function flatten to convert a matrix to a vector
flatten(m[0,]);
// output: [1,4,7,10]
// select row 2
m.row(2);
// output: [3,6,9,12]
// select rows 1 and 2.
m[1:3, ];
#0 | #1 | #2 | #3 |
---|---|---|---|
2 | 5 | 8 | 11 |
3 | 6 | 9 | 12 |
m[3:1, ];
#0 | #1 | #2 | #3 |
---|---|---|---|
3 | 6 | 9 | 12 |
2 | 5 | 8 | 11 |
There are 2 ways to retrieve a submatrix: m.slice(rowIndexRange,colIndexRange) and m[rowIndexRange,colIndexRange] where colIndex and rowIndex is scalar/pair. The upper bound is exclusive.
m=1..12$3:4;
m;
#0 | #1 | #2 | #3 |
---|---|---|---|
1 | 4 | 7 | 10 |
2 | 5 | 8 | 11 |
3 | 6 | 9 | 12 |
m.slice(0:2,1:3);
#0 | #1 |
---|---|
4 | 7 |
5 | 8 |
m[1:3,0:2];
// select rows 1 and 2, columns 0 and 1.
#0 | #1 |
---|---|
2 | 5 |
3 | 6 |
m[1:3,2:0];
// select rows 1 and 2, columns 1 and 0.
#0 | #1 |
---|---|
5 | 2 |
6 | 3 |
m[3:1,2:0];
// select rows 2 and 1, columns 1 and 0.
#0 | #1 |
---|---|
6 | 3 |
5 | 2 |
Modifying matrices
To append a matrix with a vector, the vector's size must be a multiple of the number of the rows of the matrix.
m=1..6$2:3;
m;
#0 | #1 | #2 |
---|---|---|
1 | 3 | 5 |
2 | 4 | 6 |
append!(m, 7 9);
#0 | #1 | #2 | #3 |
---|---|---|---|
1 | 3 | 5 | 7 |
2 | 4 | 6 | 9 |
append!(m, 8 6 1 2);
// appending m with two columns
#0 | #1 | #2 | #3 | #4 | #5 |
---|---|---|---|---|---|
1 | 3 | 5 | 7 | 8 | 1 |
2 | 4 | 6 | 9 | 6 | 2 |
append!(m, 3 4 5);
// output: The size of the vector to append must be divisible by the number of matrix rows.
Starting from version 2.00.4, you can use m[condition] = X for conditional assignment on a matrix, where condition is a Boolean matrix with the same shape as m. X is a scalar or vector. When X is a vector, the length must be the same as the number of true values in condition.
a = 1..12$3:4
a[a<5]=5
#0 | #1 | #2 | #3 |
---|---|---|---|
5 | 5 | 7 | 10 |
5 | 5 | 8 | 11 |
5 | 6 | 9 | 12 |
To modify a column, use m[index]=X where X is a scalar/vector.
t1=1..50$10:5;
t1;
#0 | #1 | #2 | #3 | #4 |
---|---|---|---|---|
1 | 11 | 21 | 31 | 41 |
2 | 12 | 22 | 32 | 42 |
3 | 13 | 23 | 33 | 43 |
4 | 14 | 24 | 34 | 44 |
5 | 15 | 25 | 35 | 45 |
6 | 16 | 26 | 36 | 46 |
7 | 17 | 27 | 37 | 47 |
8 | 18 | 28 | 38 | 48 |
9 | 19 | 29 | 39 | 49 |
10 | 20 | 30 | 40 | 50 |
// assign 200 to column 1
t1[1]=200;
t1;
#0 | #1 | #2 | #3 | #4 |
---|---|---|---|---|
1 | 200 | 21 | 31 | 41 |
2 | 200 | 22 | 32 | 42 |
3 | 200 | 23 | 33 | 43 |
... | ... | ... | ... | ... |
// add 200 to column 1
t1[1]+=200;
t1;
#0 | #1 | #2 | #3 | #4 |
---|---|---|---|---|
1 | 400 | 21 | 31 | 41 |
2 | 400 | 22 | 32 | 42 |
3 | 400 | 23 | 33 | 43 |
... | ... | ... | ... | ... |
// assign sequence 31..40 to column 1
t1[1]=31..40;
t1;
#0 | #1 | #2 | #3 | #4 |
---|---|---|---|---|
1 | 31 | 21 | 31 | 41 |
2 | 32 | 22 | 32 | 42 |
3 | 33 | 23 | 33 | 43 |
... | ... | ... | ... | ... |
To modify multiple columns, use m[start:end] = X, where X is a scalar or vector.
t1=1..50$10:5;
t1;
#0 | #1 | #2 | #3 | #4 |
---|---|---|---|---|
1 | 11 | 21 | 31 | 41 |
2 | 12 | 22 | 32 | 42 |
3 | 13 | 23 | 33 | 43 |
4 | 14 | 24 | 34 | 44 |
5 | 15 | 25 | 35 | 45 |
6 | 16 | 26 | 36 | 46 |
7 | 17 | 27 | 37 | 47 |
8 | 18 | 28 | 38 | 48 |
9 | 19 | 29 | 39 | 49 |
10 | 20 | 30 | 40 | 50 |
// assign sequence 101..130 to columns 1,2,3
t1[1:4]=101..130;
t1;
#0 | #1 | #2 | #3 | #4 |
---|---|---|---|---|
1 | 101 | 111 | 121 | 41 |
2 | 102 | 112 | 122 | 42 |
3 | 103 | 113 | 123 | 43 |
... | ... | ... | ... | ... |
// assign sequence 101..130 to columns 3,2,1
t1[4:1]=101..130;
t1;
#0 | #1 | #2 | #3 | #4 |
---|---|---|---|---|
1 | 121 | 111 | 101 | 41 |
2 | 122 | 112 | 102 | 42 |
3 | 123 | 113 | 103 | 43 |
... | ... | ... | ... | ... |
// add 100 to columns 3,2,1
t1[4:1]+=100;
t1;
#0 | #1 | #2 | #3 | #4 |
---|---|---|---|---|
1 | 221 | 211 | 201 | 41 |
2 | 222 | 212 | 202 | 42 |
3 | 223 | 213 | 203 | 43 |
... | ... | ... | ... | ... |
To modify a row, use m[index,] = X, where X is a scalar/vector.
t1=1..50$10:5;
// assign 100 to row 1
t1[1,]=100;
t1;
#0 | #1 | #2 | #3 | #4 |
---|---|---|---|---|
1 | 11 | 21 | 31 | 41 |
100 | 100 | 100 | 100 | 100 |
3 | 13 | 23 | 33 | 43 |
... | ... | ... | ... | ... |
// add 100 to row 1
t1[1,]+=100;
t1;
#0 | #1 | #2 | #3 | #4 |
---|---|---|---|---|
1 | 11 | 21 | 31 | 41 |
200 | 200 | 200 | 200 | 200 |
3 | 13 | 23 | 33 | 43 |
... | ... | ... | ... | ... |
To modify multiple rows, use m[start:end,] = X, where X is a scalar/vector.
t1=1..50$10:5;
// assign sequence 101..115 to columns 1 to 3
t1[1:4,]=101..115;
t1;
#0 | #1 | #2 | #3 | #4 |
---|---|---|---|---|
1 | 11 | 21 | 31 | 41 |
101 | 104 | 107 | 110 | 113 |
102 | 105 | 108 | 111 | 114 |
103 | 106 | 109 | 112 | 115 |
... | ... | ... | ... | ... |
// assign sequence 101..115 to columns 3 to 1
t1[4:1, ]=101..115;
t1;
#0 | #1 | #2 | #3 | #4 |
---|---|---|---|---|
1 | 11 | 21 | 31 | 41 |
103 | 106 | 109 | 112 | 115 |
102 | 105 | 108 | 111 | 114 |
101 | 104 | 107 | 110 | 113 |
... | ... | ... | ... | ... |
To modify an area in a matrix, use m[r1:r2, c1:c2] = X, where X is a scalar/vector.
t1=1..50$5:10;
//assign sequence 101..110 to the matrix window of row 1~2 and column 5~9
t1[1:3,5:10]=101..110;
t1;
#0 | #1 | #2 | #3 | #4 | #5 | #6 | #7 | #8 | #9 |
---|---|---|---|---|---|---|---|---|---|
1 | 6 | 11 | 16 | 21 | 26 | 31 | 36 | 41 | 46 |
2 | 7 | 12 | 17 | 22 | 101 | 103 | 105 | 107 | 109 |
3 | 8 | 13 | 18 | 23 | 102 | 104 | 106 | 108 | 110 |
4 | 9 | 14 | 19 | 24 | 29 | 34 | 39 | 44 | 49 |
5 | 10 | 15 | 20 | 25 | 30 | 35 | 40 | 45 | 50 |
t1=1..50$10:5;
// assign sequence 101..110 to the matrix window of row 5~9 and column 2~1
t1[5:10, 3:1]=101..110;
t1;
#0 | #1 | #2 | #3 | #4 |
---|---|---|---|---|
... | ... | ... | ... | ... |
6 | 106 | 101 | 36 | 46 |
7 | 107 | 102 | 37 | 47 |
8 | 108 | 103 | 38 | 48 |
9 | 109 | 104 | 39 | 49 |
10 | 110 | 105 | 40 | 50 |
// add 10 to the matrix window of rows 9~5 and columns 1~2
t1[10:5, 1:3]+=10;
t1;
#0 | #1 | #2 | #3 | #4 |
---|---|---|---|---|
1 | 11 | 21 | 31 | 41 |
2 | 12 | 22 | 32 | 42 |
3 | 13 | 23 | 33 | 43 |
4 | 14 | 24 | 34 | 44 |
5 | 15 | 25 | 35 | 45 |
6 | 116 | 111 | 36 | 46 |
7 | 117 | 112 | 37 | 47 |
8 | 118 | 113 | 38 | 48 |
9 | 119 | 114 | 39 | 49 |
10 | 120 | 115 | 40 | 50 |
To update on specified elements of a matrix, use m[rowIndex,colIndex] = X, where rowIndex, colIndex and X can be a scalar/vector.
t1=1..20$4:5
t1[0 2, 0 2]=101;
t1;
#0 | #1 | #2 | #3 | #4 |
---|---|---|---|---|
101 | 5 | 101 | 13 | 17 |
2 | 6 | 10 | 14 | 18 |
101 | 7 | 101 | 15 | 19 |
4 | 8 | 12 | 16 | 20 |
t1[2 0, 2 0]=1001..1004;
t1;
#0 | #1 | #2 | #3 | #4 |
---|---|---|---|---|
1004 | 5 | 1002 | 13 | 17 |
2 | 6 | 10 | 14 | 18 |
1003 | 7 | 1001 | 15 | 19 |
4 | 8 | 12 | 16 | 20 |
Removing certain columns of a matrix
We can use lambda expressions to remove certain columns of a matrix. Please note that for this usage the lambda expression can only accept one parameter, and the result must be a Boolean type scalar.
m=matrix(0 2 3 4,0 0 0 0,4 7 8 2);
m[x->!all(x==0)];
// return the columns that are not all 0s.
#0 | #1 |
---|---|
0 | 4 |
2 | 7 |
3 | 8 |
4 | 2 |
m=matrix(0 2 3 4,5 3 6 9,4 7 8 2);
m[def (x):avg(x)>4];
// return the columns with average value greater than 4.
#0 | #1 |
---|---|
5 | 4 |
3 | 7 |
6 | 8 |
9 | 2 |
Operating on matrices
Operations between a matrix and a scalar:
m=1..10$5:2;
m;
#0 | #1 |
---|---|
1 | 6 |
2 | 7 |
3 | 8 |
4 | 9 |
5 | 10 |
2.1*m;
// multiply 2.1 with each element in the matrix
#0 | #1 |
---|---|
2.1 | 12.6 |
4.2 | 14.7 |
6.3 | 16.8 |
8.4 | 18.9 |
10.5 | 21 |
m\2;
#0 | #1 |
---|---|
0.5 | 3 |
1 | 3.5 |
1.5 | 4 |
2 | 4.5 |
2.5 | 5 |
m+1.1;
#0 | #1 |
---|---|
2.1 | 7.1 |
3.1 | 8.1 |
4.1 | 9.1 |
5.1 | 10.1 |
6.1 | 11.1 |
m*NULL;
// the result is a null INT matrix
#0 | #1 |
---|---|
Operations between a matrix and a vector:
m=matrix(1 2 3, 4 5 6);
m;
#0 | #1 |
---|---|
1 | 4 |
2 | 5 |
3 | 6 |
m + 10 20 30;
#0 | #1 |
---|---|
11 | 14 |
22 | 25 |
33 | 36 |
m * 10 20 30;
#0 | #1 |
---|---|
10 | 40 |
40 | 100 |
90 | 180 |
Operations between matrices:
m1=1..10$2:5
m2=11..20$2:5;
m1+m2;
// element-wise addition
#0 | #1 | #2 | #3 | #4 |
---|---|---|---|---|
12 | 16 | 20 | 24 | 28 |
14 | 18 | 22 | 26 | 30 |
m1-m2;
// element-wise substract
#0 | #1 | #2 | #3 | #4 |
---|---|---|---|---|
-10 | -10 | -10 | -10 | -10 |
-10 | -10 | -10 | -10 | -10 |
m1*m2;
// element-wise multiplication
#0 | #1 | #2 | #3 | #4 |
---|---|---|---|---|
11 | 39 | 75 | 119 | 171 |
24 | 56 | 96 | 144 | 200 |
m2 = transpose(m2);
m1**m2;
// matrix multiplication
#0 | #1 |
---|---|
415 | 440 |
490 | 520 |
Applying functions to matrices
Matrix is a special case of vector. Therefore most vector functions can be applied to matrices.
m=1..6$2:3;
m;
#0 | #1 | #2 |
---|---|---|
1 | 3 | 5 |
2 | 4 | 6 |
// average of each row
avg(m);
// output: [1.5,3.5,5.5]
// sum of each row
sum(m);
// output: [3,7,11]
// cosine of each element
cos m;
#0 | #1 | #2 |
---|---|---|
0.540302 | -0.989992 | 0.283662 |
-0.416147 | -0.653644 | 0.96017 |
To perform calculations on each column of a matrix, we can also use the template each.
Matrix specific functions
We have the following matrix specific functions transpose, inverse(inv), det, diag and solve.
m=1..4$2:2;
transpose m;
#0 | #1 |
---|---|
1 | 2 |
3 | 4 |
inv(m);
#0 | #1 |
---|---|
-2 | 1.5 |
1 | -0.5 |
det(m);
// output: -2
// solving m*x=[1,2]
m.solve(1 2);
// output: [1,0]
y=(1 0)$2:1;
y;
#0 |
---|
1 |
0 |
m**y;
#0 |
---|
1 |
2 |
diag(1 2 3);
#0 | #1 | #2 |
---|---|---|
1 | 0 | 0 |
0 | 2 | 0 |
0 | 0 | 3 |