glm#
- swordfish.function.glm()#
Fit a generalized linear model.
- Parameters:
ds (Constant) – The data source to be trained. It can be generated with function sqlDS.
yColName (Constant) – A string indicating the dependent variable column.
xColNames (Constant) – A STRING scalar/vector indicating the names of the indepenent variable columns.
family (Constant,) – A string indicating the type of distribution. It can be gaussian (default), poisson, gamma, inverseGaussian or binomial.
link (Constant, optional) –
A string indicating the type of the link function.
Possible values of link and the dependent variable for each family:
family
link
default link
dependent variable
gaussian
identity, inverse, log
identity
DOUBLE type
poisson
log, sqrt, identity
log
non-negative integer
gamma
inverse, identity, log
inverse
y>=0
inverseGaussian
inverseOfSquare, inverse, identity, log | inverseOfSquare | y>=0
binomial
logit, probit
logit
y=0,1
tolerance (Constant, optional) – A numeric scalar. The iterations stops if the difference in the value of the log likelihood functions of 2 adjacent iterations is smaller than tolerance. The default value is 0.000001.
maxIter (Constant, optional) – A positive integer indicating the maximum number of iterations. The default value is 100.
- Returns:
A dictionary with the following keys: coefficients, link, tolerance, family, xColNames, tolerance, modelName, residualDeviance, iterations and dispersion.
coefficients is a table with the coefficient estimate, standard deviation, t value and p value for each coefficient;
modelName is “Generalized Linear Model”;
iterations is the number of iterations;
dispersion is the dispersion coefficient of the model.
- Return type: