Named Function
A function is a group of statements that is executed when called. It returns a value or multiple values. In DolphinDB, system built-in functions are not allowed to be overridden.
Both built-in functions and user-defined functions support specifying default parameter values. Note that the parameter with a default value cannot be mutable, and the default value must be a constant. All parameters after a parameter that is configured with a default value must also be configured with default values as well.
Note: When using mutable
for a parameter in an outer function, all
nested functions within it using the same parameter must also be decorated with
mutable
. Otherwise an error may occur during multi-threaded
processing: Read only object can't be applied to mutable function
xxx
.
Syntax
def <functionName> ([parameters]) {statements}
or
def <functionName> ([parameters]): statement (can only have one statement here)
We will discuss user-defined aggregate functions at the end of this section. Their syntax is the same as the named functions except that their definitions start with "defg" instead of "def".
Function parameters
-
Function parameters are always passed by references.
-
An input parameter can be modified within function body if and only if it is qualified by "mutable".
Examples
Define a named function:
def f(a){return a+1};
f(2);
// output: 3
def f(a):a+1;
f(3);
// output: 4
def f(a=1, b=2){return a + b}
f(,3)
// output: 4
Assign a function or an array of functions to variables:
g=sin;
g(3.1415926);
// output: 5.358979e-008
g=[sin, cos, log];
g(1 2);
sin | cos | log |
---|---|---|
0.841471 | 0.540302 | 0 |
0.909297 | -0.416147 | 0.693147 |
If a function and a variable have the same name, we can use the address operator (&) to indicate a function.
sum=15;
g=sum;
g;
// output: 15
g=∑
g;
// output: sum
g(1..4);
// output: 10
Immutable parameters cannot be modified within the function:
def f(a){a+=1; return a};
// output: Syntax Error: [line #1] Constant variable [a] can't be modified.
Mutable parameters can be modified within the function:
def f(mutable a){a+=1; return a};
x=1;
f(x);
// output: 2
f(x);
// output: 3
x;
// output: 3
x=1..6$3:2;
x;
#0 | #1 |
---|---|
1 | 4 |
2 | 5 |
3 | 6 |
def f(mutable a){if(a.rows()>=2 && a.cols()>=2){a[1,1]=0}; return a};
f(x);
#0 | #1 |
---|---|
1 | 4 |
2 | 0 |
3 | 6 |
Declare a function first then define it later:
def f2(a,b)
def f1(a,b){return f2(a,b)}
def f2(a,b){a pow b};
// ";" should not be put in-between the lines otherwise the system cannot tell f2 is a declaration without the follow up definition.
f1(2,3);
// output: 8
Return multiple values:
def summary(a){return sum(a), avg(a), std(a)};
x=1..11;
summary(x);
// output: [66, 6, 3.316625]
A more complicated example:
Let's write a function to calculate the covariance between input vectors of equal length.
(1) If neither a nor b has null elements, calculate the covariance between them.
(2) If either a or b contains null elements, we first retrieve the sub vectors that do not contain any null elements and then calculate the covariance.
def calcovar(a, b){
aNull=hasNull a; // return true if input vector a contains null values; otherwise, false
bNull=hasNull b;
if(!aNull && !bNull){ // if neither a or b contains null values
am=avg a; // calculate the mean of input vector a using function avg
bm=avg b; // calculate the mean of input vector b using function avg
ab=a ** b; // calculate the inner product of vector a and b
n=count a; // get the number of non-null values
return (ab-n*am*bm) \ (n-1); // return a covariance value
}
else{ // get all positions in which values are not null in both a and b
if(!aNull) // if a does not contain any null values
index=!isNull b; // get the indices of non-null values in b
else {
if(!bNull) // if b does not contain any null values
index=!isNull a; // get the indices of non-null values in a
else
index=!((isNull a) || (isNull b)); // get the positions that are not nulls in both a and b
}
c=a[index];
d=b[index];
am=avg c;
bm=avg d;
ab=c ** d;
n=count c;
return (ab-n*am*bm) \ (n-1);
}
}
User-defined Aggregate Functions
A user-defined aggregate function is a function that restricts the data form of the output to be scalar. There are times when we would like to make sure a function returns a scalar. Aggregate functions serve this purpose.
User-defined aggregate functions have the same syntax as the named functions except that their definitions start with "defg" instead of "def".
defg f(x, y){
a = sum(abs(x+y))
b=sum(abs(x))+sum(abs(y))
return a\b
};
x=-5..5; y=0..10;
f(x,y);
// output: 0.858824